e APACHE DORIS

From Iceberg to Al

‘ Accelerating Lakehouse Analytics and Hybrid Retrieval with Apache Doris

PRESENTER
Apache Doris Team ¢ github.com/apache/doris

P/ \Y .
Open Source Community ams doris.apache.org

A\ /4

Speaker

Matt Yi

Previously worked at Microsoft, Baidu and Tencent
Contribute 400+ Pull Requests to Apache Doris

Vectorized Excecution, MPP query engine, Workload isolation,

Memory Management
PMC Member of Apache Doris

Agenda

1. Iceberg as the Open Lakehouse

Standard

2. Doris as the Lakehouse Query
Layer

3. Customer Facing Analytics + Hybrid Retrieval

= Apache Doris & Iceberg Integration

From Iceberg to Al

Iceberg
Open Lakehouse Standard

Iceberg as the Open Lakehouse Standard

Apache Iceberg is an open table format designed for huge analytic
datasets. It brings the reliability and simplicity of SQL tables to the
big data ecosystem, while making it possible for engines like Spark,
Trino, Flink, and Apache Doris to safely work with the same tables
concurrently.

ACID

B Tronsactions:, . . sesesssssssssesemeeiteceesssassinenoeteseaeas i Tivaggy s seeseneaaesees
Icé%erg provides atomic, consistent, isolated, and durable metadata layer

transactions that ensure data reliability even with
concurrent reads and writes.

Iceberg Catalog

[

dbl.tablel

current metadata pointer

metadata file metadata file

P Schema Evolution:
Seamlessly add, drop, rename, or reorder fields in tables
without affecting query performance or causing conflicts

between concurrent reads and writes. maniiest

list

manifest
list

0 Time Travel:
Query data as it existed at a specific point in time or at a
specific snapshot, enabling reproducible queries, auditing,
and simplified data recovery.

manifest
file

manifest
file

...

data layer

data files data files data files

Multi-Modal Data

=2
1. Structured Data

Traditional Relational Model

v Fixed

v ﬁ?&r%ri'@aTypes (Int,
v ﬁgl"rljg\)v Tables

&

2. Semi-Structured

~ Dynamic schema

v JSON / Map
v @5% & Complex

{ "event": "click", ... }

Fla
3. Unstructured / Al

Multi-Modal Retrieval

v Images, Docs,
v VIS8

 Frebsgdings

Extraction

Diverse Query Patterns

The Lakehouse architecture centralizes storage, but
efficiently serving diverse workloads from a single copy
of data remains a critical bottleneck. A single engine
must now adapt to conflicting resource requirements.

A The Fragmentation Trap

Organizations often deploy separate specialized engines: Spark for ETL, Trino for
queries, and Elasticsearch/Milvus for Al. This creates "Tool Silos," resulting in
complex data synchronization pipelines, redundant storage costs, and
inconsistent data governance across systems.

WORKLOAD LATENCY REQ ACCESS PATTERN

Batch SQL Minutes / Hours Full Scan / Shuffle
Interactive second Scan/Pruning / Aggregation
Customer Facing Milliseconds E’runing/Aggregation/FiIte
Vector/Text Search Milliseconds Point lookup

@ The Unified Goal

A true Lakehouse needs a Unified Query Layer capable of serving high—
performance SQL, keyword search, and vector retrieval directly on open data
formats (lceberg). This eliminates data movement and provides a consistent
"Source of Truth" for both Bl and Al apps.

PART2

Doris
Accelerates Iceberg Analytics

ybrid Search and Analytics Database

MySQL Tools
(MySQL Networking Protocol)

A

Y

Frontend
(Leader, JAVA)

Frontend

(Follower, JAVA)

Frontend
(Observer, JAVA)

A

v

Y

v

Backend
(C++)

Backend
(C++)

Backend
{ G4

t

I

Data Source
RDBMS
ii’olaﬂrbB v
VRDVS 77 i

mysaL

'H‘Pos‘t‘(_:,‘reSQl;

SQL Server

Oracle

loT
Time-Series

Data

)

Kafka J

Data Intergration

[CcbC
J

Batch Processing
(Spark, Hive)

T

Stream Processing
(Flink)

Tools
(DTS, DataWorks, DBT)

\4

\4

Apache Doris

Real-time Analysis

LakeHouse Analysis

Observability and
Log Analysis

Data Warehousing

GenAl Hybrid Search

v

Data LakeHouse

Iceberg, Hudi, Paimon,
Delta Lake

\4

Applications

Reporting / Dashboard

Ad-hoc Query / Self-Service Bl

Customer / User facing Analytics J

|
|
{
|

CDP / User Behavior and
Profile Analysis

<

A/B Testing

LakeHouse Query Acceleration

Federated Analysis

—J J _J L

ETL/ELT

L

Logs / Events / Traces Analysis

Data Science

{
[
[
{
{
[
(

RAG

Fast Execution
Engine

Y CBO & HBO Optimizer

Pushes filters and predicates down to the storage layer (Iceberg

manifest/files). Reduces |/O by skipping irrelevant data blocks early,
minimizing the amount of data transferred and processed by the execution

engine.

AR MPP Query Engine

B Tasks are executed in a pipeline and concurrently.

B Data is transmitted in memory.

{F Vectorized Execution Engine
mCompile-time

(@) @) O (@) (@) O O O S O O
e £ e & 2 =l Bl El g s g :
= el | BBl EB| /BIE Bl E|/EE|)E optimization X86: SSE, AV2,AVX512
B SIMD instructions ARM: neon, sv2 (ARMV9)
k1 k2 ki1+k2 > i k2 Sumi(k1) B CPU Cache affinity

k1 k2 k1 k2 k1+k2 10

Native Parquet Reader

Apache Doris implements several key optimizations for efficient
file reading from Iceberg tables, dramatically improving query
performance on data lakes:

Predicate Push

¥ Down
Filters pushed into storage layer, eliminating unnecessary data

reads. Leverages Iceberg metadata for precise filtering.

& Lazy Materialization
Defers column loading until actually needed, reducing memory usage
and 1/0O by 40-60% for wide tables.

pp Prefetch & Merge 10:

Intelligent data prefetching mechanisms with adaptive read-ahead
strategies reduce I/O wait times by 60-80%. Batch read requests are
merged to minimize network round trips.

Performance

TAegetoptimizations reduce data scan volume by up to 95% and
cut query latency by 5-10x compared to traditional data lake
queries.

{ Predicate Push Down

File Optimization
Layer

COUNT(*) Optimization

Native Parquet Reader

Storage Access
Layer

Lazy Materialization

Prefetch & Merge
o)

Multi-Level Cache

Apache Doris achieves high—performance real-time queries on
lceberg tables through a series of sophisticated engine and 1/O
optimizations designed specifically for lake data processing.

pp Manifest Cache

The deserialized metadata to decrease the parsing latency.
And will support distributed metadata cache.

Data Cache:

Local SSD cache for hot data blocks, support warmup and
LRU. And will support uncompressed data cache in next
version.

lceberg Metadata

NRfieI3atEYFation with Iceberg's metadata layer for efficient
partition pruning, statistics utilization, and snapshot selection,
reducing data scan volumes by up to 95% for typical analytical
queries.

Metadata

Iceberg

Data Files

Metadata & }

Execution

Vectorized

Query Engine

10 Management

|

Prefetch &
Merge

|

Multi-level
Cache

Smart Schedule

Achieving real-time query performance on Iceberg tables
requires sophisticated scheduling and scanning optimizations.
Apache Doris implements several advanced techniques to
maximize efficiency:

Priority Scan

ItBRYLGEY prioritizes scan tasks based on data locality, task
complexity, and cluster load balance to minimize query
latency.

Runtime Partition

Y Prune:

Eliminates unnecessary partition scans at runtime using

v

—
-

predicate conditions, dramatically reducing data scan volume.

Performance

Impact:
These optimizations collectively reduce query latency by 70—

90% compared to standard Iceberg scans, delivering near—
database speed for data lake queries with predictable latency.

Query Planning

Parse SQL &
create logical plan

Task Scheduling

Assign priorities e Tl L s

& resources

Scan Operations
CPriority Scheduler) Read & process

data chunks

Result Processing Data Filtering
Limit & sort Filter by
results predicates

CI’ op-N OptimizatioD (Runtime Partition Prun(D

Materialized View

Materialized views are pre—computed, persistent result sets that
transform complex analytical queries into simple table lookups,
significantly accelerating query performance while maintaining data

freshness.
- Materialized
=~ Storage:

Q

Apache Doris stores pre—computed aggregates, joins, and
filtered datasets in its highly optimized columnar format,
dramatically reducing query processing time.

Transparent Query

Rewrite:
Queries automatically leverage materialized views without

requiring any changes to application code, making
integration seamless.

Partition Level

Retesior rebuilding the entire materialized view when source
data changes, Doris intelligently refreshes only affected
partitions, dramatically reducing refresh overhead and
ensuring data freshness.

Apache Doris

: Query Optimizer(Rewriter)

/]

Partition Level Incremental Refresh

Query MV
When datais synced

Query datalake directly
when MV is not synced

Materialized View \
N

N

L]

DatalLake
(Iceberg/Paimon/Hudi/Hive)

Materialized View

Performance Comparison: Before vs. After Materialized Views

[
[T L T S =

Response Time (seconds)

[Y 5 T S e I =

Da‘c—'ﬂﬂhnm

B Vithout MY (seconds) [\With Doris MV (seconds)

compte®

oading pytics

Ny

a‘iilt'tlﬁ

Q-,_:.ET":'
T

ne-5°

1= pna

I'\J E,:I.Er

'Fl.'ﬁ'ﬂ'ieﬂ =

garch

42x

Average

query
speedup

98%

Reduction
in scan size

A293 ms

dashboard
response

)¢

Concurrent
user capacity

Customer Facing
Analytics + Hybrid Retrieval

Key Challenges

%" High Concurrency & low latency:

Q

Provide high-concurrency data query services for
users, with latency controlled at the second or
millisecond level to ensure a good user experience. Al
Agent will trigger more queries for a single task,
placing greater pressure on the system.

Data Freshness:

Data can be ingested on a large scale in near real time,
with updates integrated into the data, ensuring real-time
insights.

High
Concurrency

Customer-
Facing
Analytics

Data
Freshness

35000

30000

25000

20000

15000

10000

5000

0

Performance

Iceberg external Table vs Doris internal Table

FAINP M “.|.|||.l.|...l| M._..I|]..I|..|.|.|J_.||...._.J.!..‘.|||.|‘.||‘..|.|.J||.|I’.I.|..J||.I .|.||.I|.I‘“.|.I I.|..._.__.|..||I1_._...|....1 i

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 995101103

W load datainto Doris W Doris on Iceberg

« TPC-DS 1TB
e 193 seconds vs 413 seconds
 All data is cached in local cache

Although TPC-DS is already a CPU-intensive benchmark, we found that the performance of Doris internal

tables is stil 2X faster that of lceberg external tables.

450000

400000

350000

300000

250000

200000

150000

100000

50000

Load data into Doris

TotalTime

Doris on Iceberg

Blazing fast in simple key-value queries

18

16

14

12

10

o %] E-3 =3} oo

99th Percentile Latency (ms)

17

m Before Opt
m After Opt

*

Before Opt After Opt

« Row Format instead of column format

» Short circuit query, skip sqgl parser and planning

35000

30000

25000

20000

15000

10000

5000

QPS (Queries Per Second)

m Before Opt
m After Opt

Before Opt After Opt

e CPU: 48 core
e Benchmark: YCSB
* 100M records

Sub-second Real-time Update
Merge On Write

Merge On Read

Final Result

1

Merge Sort

Rowsetl Rowset2 Rowset3

Rowset can be treated as a parquet file in iceberg.

Read Process

LRU Cache for Delete Bitmap

ananuonm

11—

Read Bitm
= Query on Version7

v N/ ¥
key| c1[c2] V6 V7 [key[c1[c2] v6 v8 Key|C1 |c2| v7 v8 Key| C1 [C2| V8 Key| C1 | C2
(1 /[0] 0|
0{0 0 0
Lo][o] [0 0]
RowSet1 RowSet2 RowSet3 RowSet4
version [0-5] version [6-6] version [7-7] version [8-8]

Performance during real-time update

SSB 25% Update Per Query Performance TotalTime(s)

100

-
N

-
o

80
70

60
50
40
30
20
10

Q1.1 Q12 Q1.3 Q21 Q22 Q23 Q3.1 Q32 Q33 Q34 Q41 Q42 Q43

o N ~] oo

Doris is 25x faster than other

Variant: Columnar JSON Format

CREATE TABLE IF NOT EXISTS ${table_name} (
k BIGINT,
v VARIANT

Segment File

{"a”: 10, “b™:"str1”, “c™:{"c17: 1.2, “c2”: 4.6}}
{” !! 11 “b” “Str2” “CH {“C1 ”., 1 3 “C2H “Str”}}

)
PROPERTIES("replication_num" = "1");

Col a Col b Col cT Col c2 SELECT CAST(v['properties']['title'] AS STRING) AS title
10 st 1.2 4.6 FROM ${table_name}
11 str2 1.3 str
GROUP BY title;

System Relative time (lower is better)
ClickHouse (1z4):

int string double jsonb ClickHouse (zstd):
Apache Doris:

Starrocks:
Elasticsearch (1z4):
Elasticsearch (zstd):
SingleStore:
MongoDB (zstd):
MongoDB (snappy):
DuckDB:
PostgreSQL:

Detailed Comparison

ClickHouse (1z4) ~ ClickHouse (zstd) Apache Doris Starrocks i (1z4) i (zstd) i MongoDB (zstd) MongoDB (snappy) DuckDB PostgreSQL
Data size: 150.32 GiB (x1.62) [[920720GIBN(X1100)) 199.88 GiB (x2.16) 179.73 GiB (x1.94) |454.54 GiB (x4.90) | 359.58 GiB (x3 88) 218.75 GiB (x2.36) 164.60 GiB (x1.78) 246.35 GiB (x2.66) | 440.14 GiB (x4.75) [INGISYGINGIEN(X6163))
bate quality: 090905258 090099255 990995094 sassa9se 993909153 |

|
: a | e S S L e et | onen (rait o |57t st |k s (oo |
- Convert JSON Into a Columnar format @ 515635 (<1.08) 6,160 GALE2)| 11,2605 (2.00) 27,3805 (<h.95) | 28.5085 (:5,16)
e OO T EEERTNEWERN RO | | s Gairo) | saeoms Gasren | 1.0 (aersn | rir.edls (39700 | 42533005 (598,40 |
“ | (OO CT NETRENTN osis o) [[5a.400s (7,19 | 168.7975 (:193.59) | eo.068s (x198.68) | 5719.2735 (xt2c5.29) | 4507.0905 (sseer.a) |
LTI O R E RO B [o (oinsy | 073208 (:076.99) | 172.653s tou55) | 3722.8045 (ss0e2.57) | dsis.sovs (sseis.ou |

- Support array and nested JSON

Hot Run

JSONB: Fast row format

CREATE TABLE test_json (300
id INT, o
j JSON .

)

DUPLICATE KEY(id)

DISTRIBUTED BY HASH(id) BUCKETS 10

PROPERTIES("replication_num" = "1"); ” | | I

s Lk

150

100

£ & '-i*('\" ¢ g & & g & & g @& _@*" & & 2 &
/fb {}(‘\\‘ o';\k x5 7 x5 & & b r\,f, '3&7 & & « & & & E 2 @ R
i 8 A g0 & F WS &S S $ & & & ;T e
N & & ¢ & 4 & & & & RS s < . 8 & &
r G $ S &7 S & &« & & & &
{7 {; 0(\ 7 0(\ s @ @ # O(\ s & pa
o P S S N

i & ¥ ¥ ¢
] 5 &7
£ ¢

json_extract(j, '$.allel'), Wi wpob
qjson_extract(j, '$.a1[0].k1') 5-10x improvement

test_json

Vector Search

“ Xi vector store &index

Image Video X
~ Algos: HNSW, IVF __ Il Embedding 2 | ANN Search & H H H H l £ [H H
- Vector type: Array<float/double> ! Y (E > . B T AR L R
- Distance: L1, L2, COSINE, Product Audio Text x| l H H H } l | H H
- Quantization: SQ4,5Q8,PQ _ _ X, =R Bl Sl Midls EROR R

CREATE TABLE sift_1M (
id int NOT NULL, Top N Query Range Query
embedding array<float> NOT NULL COMMENT "",

INDEX ann_index (embedding) USING ANN PROPERTIES(

"index_type"="hnsu",) SELECT 1id, SELECT count(x)
dimoragy L2 distancel FROM sift_im
Egttz O Reoeslhem amngiily 5 Tgbiid;;gz N WHERE lzagiz;aizce_approximate(

) "pq_nbits"="2" — Required when using PQ, in 0,6,92,8, 14,73,125,29, [B 14. 77954 3.0.0.0.28.70
S ERGTIEL 50,25,70,64,7,59,18,7, e T !
DUPLICATE KEY(id) COMMENT "OLAP") AS distance °,6,92,8,14,73,125,29,7,0
2:{3;@;:2;0(3\(HASH(id) BUCKETS 1 FROM sift 1m 50,25,70,064,7,59,18,7,16,.
, oepsenpuac ORDER BY distance > e

LIMIT 10;

Performance

Qps (more is better)

Milvus-16c64g-hnsw-v2.2.12

Qdrantcloud-16cs4g-1.14.1 |, -+

OpenSearch-16¢c128g-2.17
Doris-16c64g-mixture
S3Vectors
WeaviateCloud-bus_crit

WeaviateCloud-standard

PgVector-2c8g I 10.63

Recall (more is better)

WeaviateCloud-standard
WeaviateCloud-bus_crit
Milvus-16c64g-hnsw-v2.2.12
Doris-16c64g-mixture
QdrantCloud-16c64g-1.14.1
OpenSearch-16c128g-2.17
PgVector-2¢8g

S3Vectors

Load_duration (less is better)

Doris-16c64g-mixture .3975
Milvus-16c64g-hnsw-v2.2.12 [581.85
QdrantCloud-16c64g-1.14.1 _1,5005
S3Vectors 2971s
opensearch-16c128g-2.17 || G : 5725
WeaviateCloud-standard _3,5815
WeaviateCloud-bus_crit _3,5745
pevector-2csg | (0,205

« CPU: Intel Xeon Platinum 8369B @ 2.70GHz (16 #%)

« Memory: 64GB

« Benchmark: https://github.com/zilliztech/VectorDBBenc
- 768D 1M

https://github.com/zilliztech/VectorDBBench

Fulltext Search

Inverted Index

Keywords
“beats”
“machine”
“of?
“war”
“nation”
“mind”
“beautiful”
“Sunshine”
“Show”

“Club”

c
L4

w“ o s e item ids
127 > 210 | <_/
R
o 127 .
—> 4 .
— 1 > 2 > s >
—> n }—) 102 }—»
—> 22— }—»
—> 66 }—» .
—> 77 > ses ‘,—» 99 ..
77 "Fight club”,

11: "A beautiful mind",

22: "Eternal sunshine of the spotless mind",
33: "A brilliant young mind",

44: "Beasts of no nation",

55: "Fantastic beasts and where to find them",
66: "The Truman show",

88: "The breakfast club",

99: "Dallas buyers club",

101: "Sunshine”,

102: "Life is beautiful"

*Equality and set: =, !=, IN, NOT IN
*Range: >, >=, <, <=, BETWEEN

*Null checks: IS NULL, IS NOT NULL
*Arrays: array_contains, array_overlap

Search Syntax

Tokenizer
- 1k

- Jieba

- Pinyin
- ICU

Match

- MATCH_ANY

- MATCH_PHRASE
- MATCH_ALL

Query DSL

SELECT id, title
FROM search_test_basic
WHERE SEARCH('category:Technology AND NOT title:Machine');

BM25 Score

Global TopK

-

Segment1 Segment2

\

Segment3

J

7tota|7n!m,docs
_total_num_token
S
_term_doc_freqs

Tablet

Segment1

\

N

Segment?2 Segment3

J

7tota|7n!m,d ocs
_total_num_token
S
_term_doc_fregs

Tablet

SELECT x*,
score() AS relevance
FROM search_demo
WHERE content MATCH_ANY 'text search test'
ORDER BY relevance DESC
LIMIT 10;

‘MATCH_ANY
‘MATCH_ALL
‘MATCH_PHRASE
‘MATCH_PHRASE_PR
EFIX

*SEARCH

Key Takeaways Let's Connect

1. Fast Query Acceleration Layer "

Q&A

Open for Discussion

Apache Doris acts as a powerful query layer, significantly
accelerating Iceberg analytics without data migration.

2. High Concurrent & Low Latency Customer Facing

Analytics
High concurrency and low latency are core to customer-facing .o . .
analytics systems, ensuring smooth user experiences amid massive ae= Join the Community

simultaneous requests.
GitHub github.com/apache/doris

3. Al-Ready Foundation

Apache Doris unifies analytics, full-text, and vector search,
enabling complex hybrid retrieval workloads for modern Al Slagk Channel #apache-
applications. doris

Website doris.apache.org

Presented by:
s . Thank You for Listening!
Apache Doris Community

