
APACHE DORIS

From Iceberg to AI
Unified Lakehouse & Hybrid Retrieval
Accelerating Lakehouse Analytics and Hybrid Retrieval with Apache Doris

PRESENTER

Apache Doris Team github.com/apache/doris

doris.apache.orgOpen Source Community

Previously worked at Microsoft，Baidu and Tencent

Contribute 400+ Pull Requests to Apache Doris
Vectorized Excecution, MPP query engine, Workload isolation，

Memory Management
PMC Member of Apache Doris

Matt Yi

Speaker

Agenda

1. Iceberg as the Open Lakehouse
Standard

1

2. Doris as the Lakehouse Query
Layer

2

3. Customer Facing Analytics + Hybrid Retrieval 3

Apache Doris & Iceberg Integration From Iceberg to AI

01
PART1

Iceberg
Open Lakehouse Standard

Iceberg as the Open Lakehouse Standard
Apache Iceberg is an open table format designed for huge analytic
datasets. It brings the reliability and simplicity of SQL tables to the
big data ecosystem, while making it possible for engines like Spark,
Trino, Flink, and Apache Doris to safely work with the same tables
concurrently.

ACID
Transactions:
Iceberg provides atomic, consistent, isolated, and durable
transactions that ensure data reliability even with
concurrent reads and writes.

Schema Evolution:
Seamlessly add, drop, rename, or reorder fields in tables
without affecting query performance or causing conflicts
between concurrent reads and writes.

Time Travel:
Query data as it existed at a specific point in time or at a
specific snapshot, enabling reproducible queries, auditing,
and simplified data recovery.

Multi-Modal Data

1. Structured Data
Traditional Relational Model

Fixed
SchemaAtomic Types (Int,
String)Narrow Tables

ICEBERG
VARIANT

2. Semi-Structured

Dynamic schema

JSON / Map
TypesSparse & Complex
Columns

{ "event": "click", ... }

3. Unstructured / AI
Multi-Modal Retrieval

Images, Docs,
VideoVector
EmbeddingsMetadata
Extraction

[0.1, 0.9...]

The Fragmentation Trap The Unified Goal

Diverse Query Patterns

The Lakehouse architecture centralizes storage, but
efficiently serving diverse workloads from a single copy
of data remains a critical bottleneck. A single engine
must now adapt to conflicting resource requirements.

WORKLOAD LATENCY REQ ACCESS PATTERN

Batch SQL Minutes / Hours Full Scan / Shuffle

Interactive second Scan/Pruning / Aggregation

Customer Facing Milliseconds Pruning/Aggregation/Filte
r

Vector/Text Search Milliseconds Point lookup

Organizations often deploy separate specialized engines: Spark for ETL, Trino for
queries, and Elasticsearch/Milvus for AI. This creates "Tool Silos," resulting in
complex data synchronization pipelines, redundant storage costs, and
inconsistent data governance across systems.

A true Lakehouse needs a Unified Query Layer capable of serving high-
performance SQL, keyword search, and vector retrieval directly on open data
formats (Iceberg). This eliminates data movement and provides a consistent
"Source of Truth" for both BI and AI apps.

02
PART2

Doris
Accelerates Iceberg Analytics

Hybrid Search and Analytics Database

Fast Execution
Engine

Vectorized Execution Engine
Compile-time

optimization
SIMD instructions

CPU Cache affinity

MPP Query Engine

CBO & HBO Optimizer

Pushes filters and predicates down to the storage layer (Iceberg
manifest/files). Reduces I/O by skipping irrelevant data blocks early,
minimizing the amount of data transferred and processed by the execution
engine.

C
olum

n

C
olum

n

k1 k2

C
olum

n

C
olum

n

k1 k2 k1+k2

C
olum

n

C
olum

n

C
olum

n

k1 k2 k1+ k2 >
10

C
olum

n

0 1 0 0 0 1

C
olum

n

C
olum

n

k1 k2 Sum(k1)

X86: SSE, AV2,AVX512

ARM: neon，sv2（ARMV9）

Task Task

Task

Task Task

Task Task

Tasks are executed in a pipeline and concurrently.

Data is transmitted in memory.

Native Parquet Reader

Apache Doris implements several key optimizations for efficient
file reading from Iceberg tables, dramatically improving query
performance on data lakes:

Predicate Push
Down
Filters pushed into storage layer, eliminating unnecessary data
reads. Leverages Iceberg metadata for precise filtering.

Lazy Materialization

Defers column loading until actually needed, reducing memory usage
and I/O by 40-60% for wide tables.

Performance
Impact:These optimizations reduce data scan volume by up to 95% and
cut query latency by 5-10x compared to traditional data lake
queries.

File Optimization
Layer

Storage Access
Layer

Predicate Push Down COUNT(*) Optimization

Native Parquet Reader Lazy Materialization

Prefetch & Merge
IO

Prefetch & Merge IO:

Intelligent data prefetching mechanisms with adaptive read-ahead
strategies reduce I/O wait times by 60-80%. Batch read requests are
merged to minimize network round trips.

Multi-Level Cache

Apache Doris achieves high-performance real-time queries on
Iceberg tables through a series of sophisticated engine and I/O
optimizations designed specifically for lake data processing.

Manifest Cache

Data Cache:
Local SSD cache for hot data blocks, support warmup and
LRU. And will support uncompressed data cache in next
version.

Iceberg Metadata
Optimization:Native integration with Iceberg's metadata layer for efficient
partition pruning, statistics utilization, and snapshot selection,
reducing data scan volumes by up to 95% for typical analytical
queries.

Vectorized
Query Engine

IO Management

Prefetch &
Merge

Multi-level
Cache

Iceberg
Metadata &
Data Files

Execution

IO

Metadata

The deserialized metadata to decrease the parsing latency.
And will support distributed metadata cache.

Smart Schedule

Achieving real-time query performance on Iceberg tables
requires sophisticated scheduling and scanning optimizations.
Apache Doris implements several advanced techniques to
maximize efficiency:

Priority Scan
Scheduler:Intelligently prioritizes scan tasks based on data locality, task
complexity, and cluster load balance to minimize query
latency.
Runtime Partition
Prune:
Eliminates unnecessary partition scans at runtime using
predicate conditions, dramatically reducing data scan volume.

Performance
Impact:
These optimizations collectively reduce query latency by 70-
90% compared to standard Iceberg scans, delivering near-
database speed for data lake queries with predictable latency.

Query Planning
Parse SQL &

create logical plan

Task Scheduling
Assign priorities

& resources

Priority Scheduler
Scan Operations

Read & process
data chunks

Batch Split Mode

Data Filtering
Filter by

predicates

Runtime Partition Prune

Result Processing
Limit & sort

results

Top-N Optimization

Materialized View
Materialized views are pre-computed, persistent result sets that
transform complex analytical queries into simple table lookups,
significantly accelerating query performance while maintaining data
freshness.

Materialized
Storage:
Apache Doris stores pre-computed aggregates, joins, and
filtered datasets in its highly optimized columnar format,
dramatically reducing query processing time.

Transparent Query
Rewrite:
Queries automatically leverage materialized views without
requiring any changes to application code, making
integration seamless.

Partition Level
Refresh:Instead of rebuilding the entire materialized view when source
data changes, Doris intelligently refreshes only affected
partitions, dramatically reducing refresh overhead and
ensuring data freshness.

Materialized View

42×
Average
query
speedup

98%
Reduction
in scan size

23 ms
Avg.
dashboard
response

5x
Concurrent
user capacity

03
PART3

Customer Facing
Analytics + Hybrid Retrieval

Customer-
Facing

Analytics

High
Concurrency

Low LatencyData
Freshness

Data Freshness:
 Data can be ingested on a large scale in near real time,
with updates integrated into the data, ensuring real-time
insights.

High Concurrency & low latency:
Provide high-concurrency data query services for
users, with latency controlled at the second or
millisecond level to ensure a good user experience. AI
Agent will trigger more queries for a single task,
placing greater pressure on the system.

Key Challenges

Performance

Although TPC-DS is already a CPU-intensive benchmark, we found that the performance of Doris internal

tables is still 2x faster that of Iceberg external tables.

• TPC-DS 1TB
• 193 seconds vs 413 seconds
• All data is cached in local cache

Blazing fast in simple key-value queries

• CPU：48 core

• Benchmark：YCSB

• 100M records

• Row Format instead of column format

• Short circuit query, skip sql parser and planning

Sub-second Real-time Update
Merge On Write

Rowset can be treated as a parquet file in iceberg.

Merge On Read

Performance during real-time update

0

2

4

6

8

10

12

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

SSB 25% Update Per Query Performance

clickhouse Doris

Doris is 25x faster than other

0
10
20
30
40
50
60
70
80
90

100

clickhouse Doris

TotalTime(s)

Variant: Columnar JSON Format

Hot Run

Col C

Col c2

jsonb

4.6
str

Col c1

double

1.2
1.3

Col b

string

srt1
str2

Col a

int

10
11

Segment File

{”a”: 10, “b”:“str1”, “c”:{“c1”: 1.2, “c2”: 4.6}}
{”a”: 11, “b”:“str2”, “c”:{“c1”: 1.3, “c2”: “str”}}

- Convert JSON into a columnar format
- Support array and nested JSON

JSONB: Fast row format

5-10x improvement

Vector Search

Range QueryTop N Query

ANN

- Algos：HNSW，IVF
- Vector type：Array<float/double>
- Distance: L1, L2, COSINE, Product
- Quantization：SQ4,SQ8,PQ

Performance

• CPU：Intel Xeon Platinum 8369B @ 2.70GHz (16 核)

• Memory：64GB

• Benchmark：https://github.com/zilliztech/VectorDBBench

• 768D 1M

https://github.com/zilliztech/VectorDBBench

Fulltext Search
Inverted Index

•Equality and set: =, !=, IN, NOT IN
•Range: >, >=, <, <=, BETWEEN
•Null checks: IS NULL, IS NOT NULL
•Arrays: array_contains, array_overlap
s

Search Syntax

Tokenizer
- Ik
- Jieba
- Pinyin
- ICU

Match
- MATCH_ANY
- MATCH_PHRASE
- MATCH_ALL

Query DSL

BM25 Score

•MATCH_ANY
•MATCH_ALL
•MATCH_PHRASE
•MATCH_PHRASE_PR
EFIX
•SEARCH

Tablet

_total_num_docs
_total_num_token

s
_term_doc_freqs

Segment3Segment1 Segment2

Tablet

_total_num_docs
_total_num_token

s
_term_doc_freqs

Segment3Segment1 Segment2

Global TopK

Key Takeaways

1. Fast Query Acceleration Layer

2. High Concurrent & Low Latency Customer Facing
Analytics
High concurrency and low latency are core to customer-facing
analytics systems, ensuring smooth user experiences amid massive
simultaneous requests.

3. AI-Ready Foundation
Apache Doris unifies analytics, full-text, and vector search,
enabling complex hybrid retrieval workloads for modern AI
applications.

Let's Connect

Q & A
Open for Discussion

Join the Community

GitHub github.com/apache/doris

Website doris.apache.org

Slack Channel #apache-
doris

Presented by:

Apache Doris Community
Thank You for Listening!

Apache Doris acts as a powerful query layer, significantly
accelerating Iceberg analytics without data migration.

